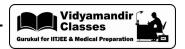


 S^{-1} , ML^{-1} S^{-1}

1.

(A)

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Main (Archive)	Exact Duration :		


(B)

 S^{-1} , M

Units of rate constant of first-and zero-order reactions in terms of molarity \boldsymbol{M} are respectively :

DTS-1				90		IFF	Main (Δι	rchive) Chemica	l Kinetics
	(A)	0.10/k (I	B) 0	0.29/k	(C)	0.69/k	(D)	0.75/k	
	rate constant for a first-order reaction is k , then $t_{1/4}$ can be written as : (2005)							(2005)	
9.	t _{1/4} ca	n be taken as the	time tal	ken for concer	ntration (of reactant to d	rop to ¾	of its initial val	lue. If the
	(C)	second order reac	tion		(D)	Bimolecular re	action		\odot
	(A)	Unimolecular read	ction		(B)	First order rea	ction		
8.	A react	ion involving two d	ifferent :	reactants can	never be	:			(2005)
	(C)	$E_{\rm b}$ = $E_{\rm f}$			(D)	There is no def	inite rela	ation between E	and $E_{\rm f}$
	(A)	$E_{\rm b}$ < $E_{\rm f}$			(B)	$E_{\rm b}$ > $E_{\rm f}$			\odot
		l reactions, respect				8			(2005)
7.	Conside	er an endothermic	reaction	ı, X — → Y w	ith the a	ctivation energi	es E _b and	$d E_f$ for the back	ward and
	(C)	7.5 minutes			(D)	30 minutes			
	(A)	60 minutes		3	(B)	15 minutes			
J.	In a first-order reaction, the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is: (2004)						(2004)		
6.		2	he conc	entration of th	ie reacta	nt decreases fro	om 0.8 N	I to 0 4 M in 15	minutes
	(A)	$\frac{1}{2^{m+n}}$	B) (m + n)	(C)	(n – m)	(D)	$2^{(n-m)}$	
	reaction will be as: (200)								(2003)
	concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of t							ate of the	
5.	The rat	e law for a reaction	ı betwee	en the substan	ices A an	d B is given by	rate = k	[A] ⁿ [B] ^m . On dou	abling the
	(C)	k is equilibrium c	onstant		(D)	A is adsorption	n factor		
	(A)	E _a is energy of a	ctivation	ı	(B)	R is Rydberg c	onstant		
4.	Which	one is correct for k	$x = Ae^{-E_a}$	a/RT					(2003)
	(C)	$\frac{1}{2}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[I_2]}{dt}$	$=\frac{-u[HI]}{dt}$		(D)	$-2\frac{\mathrm{d}[\mathrm{H}_2]}{\mathrm{d}t} = -2\frac{\mathrm{d}t}{\mathrm{d}t}$	$\frac{d^{1}2^{1}}{dt} = \frac{dl^{1}}{dt}$	t	
	(A)	$\frac{-\mathrm{d[H]}_2}{\mathrm{dt}} = \frac{-\mathrm{d[I}_2]}{\mathrm{dt}} =$	ac			$\frac{\text{d[H]}_2}{\text{dt}} = \frac{\text{d[I}_2]}{\text{dt}} =$		-TI	
		$H_2 + I_2 \rightleftharpoons 2HI$				에버) 에기	4[HI]		
3.	The diff	Gerential rate law fo		action,					(2002)
	(C)	5			(D)	7			\odot
	(A)	3			(B)	6			\sim
2.	For a re	a reaction $A + 2B \longrightarrow C$, rate is given by $R = k[A][B]^2$. The order of reaction is: (2002)					(2002)		
	(C)	MS^{-1}, S^{-1}			. ,	M, S ⁻¹			

(2002)

10.	concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will									
	(A)	remain uncha			(B)	triple			(2006)	
	(C)	increase by a	factor of	4	(D)	double				
11.	Rate o	of a reaction can	be expre	essed by Arr	henius equat	ion as : $k = Ae^{-1}$	E /RT		(2006)	
	In this	In this equation, E represents :								
	(A)	the energy above which all the colliding molecules will react								
	(B)	the energy below which colliding molecules will not react								
	(C)	the total energy of the reacting molecules at a temperature, T								
	(D)	the fraction of	molecu	les with ene	rgy greater th	an the activation	n energ	y of the reacti	on	
12.	The fo	ollowing mechan	ism has	been propos	sed for the rea	action of NO wit	h Br ₂ to	form NOBr	(2006)	
		$NO(g) + Br_2(g)$) ===== 1	NOBr ₂ (g); N	NOBr ₂ (g) +NO	$(g) \longrightarrow 2NOE$	Br(g)			
	If the	$NO(g) + Br_2(g) \Longrightarrow NOBr_2(g)$; $NOBr_2(g) + NO(g) \longrightarrow 2NOBr(g)$ If the second step is the rate determining step, the order of the reaction with respect to $NO(g)$ is:								
	(A)	1	(B)	0	(C)	3	(D)	2	,	
13.	Consi	der the reaction,	2A + B	→ Products					(2007)	
		When concentration of B alone was doubled, the half-life did not change. When the concentration of A								
		alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is:								
	(A)	$L \text{ mol}^{-1} \text{ s}^{-1}$	(B)	no unit	(C)	$mol\ L^{-1}\ s^{-1}$		\mathbf{s}^{-1}		
14.	The e	nergies of activa	tion for	forward and	l reverse reac	tions for $A_2 + B$	3 ₂ ─	2AB are 180	kJ mol ⁻¹ and	
		The energies of activation for forward and reverse reactions for $A_2 + B_2 \rightleftharpoons 2AB$ are 180 kJ mol ⁻¹ and								
		200 kJ mol ⁻¹ respectively. The presence of catalyst lowers the activation energy of both (forward and reverse) reactions by 100 kJ mol ⁻¹ . The enthalpy change of the reaction $(A_2 + B_2 \rightarrow 2AB)$ in the presence								
		of catalyst will be (in kJ mol ⁻¹): (2007)								
	(A)	300	(B)	. 120	(C)	280	(D)	-20	(2001)	
		,							•	
15.	For a	reaction $\frac{1}{2}A \rightarrow$	2B, rat	e of disappe	earance of 'A'	is related to the	ne rate (of appearance	e of 'B' by the	
	expre	ssion:							(2008)	
	(A)	$-\frac{d[A]}{dt} = \frac{1}{2}\frac{d}{dt}$	B] lt			$-\frac{d[A]}{dt} = \frac{1}{4}\frac{d}{dt}$				
	(C)	$-\frac{d[A]}{dt} = \frac{d[B]}{dt}$]		(D)	$-\frac{d[A]}{dt} = 4\frac{d}{dt}$	B		\odot	